PHYSICAL REVIEW E 68, 061506 (2003

Structure and phase behavior of a two-dimensional system with core-softened
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The structure and phase behavior of a two-dimensional system with purely repulsive core-softened and
long-range interactions are studied using Monte Carlo computer simulations. The pair interactions are of the
form, u(r)=4€[(a/r)*?—(a/r)®]+ € (a/r)3, with the energy parametee’ =(8.6/9)e chosen to give a
stationary point of inflection in the pair potential at 6Y°c-. This potential approximates the effective inter-
particle interactions for a two-dimensional dipolar system in a strong field aligned perpendicular to the plane.
The low-temperature portion of the phase diagram is sketched out, and the static properties of the various
phases are analyzed in some detail. At low temperatures a variety of interesting states are in evidence,
including: fluids with chainlike, striped, and 6—10 sided polygon structural motifs; low-density and high-
density triangular crystalline phases; and defective Kagatiees. It is shown that clustering is driven by the
presence of the repulsive shoulder in the pair potential. Other features, such as the presence of a disordered
phase with a network structure, are due to the long-rangé)(i¢pulsive tail in the potential. The relevance
of the simulation results to experimental work, including materials synthesis, is briefly discussed.
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I. INTRODUCTION Monte Carlo(MC) computer simulation$4,5]. In the ab-
sence of an applied magnetic field, the dipoles lie preferen-

The theoretical description of the structure, propertiestially in the plane of the fluid, with very small fluctuations in
and dynamics of strongly interacting dipolar fluids remains ahe normal direction. At low temperatures, the dipoles are
challenging topic in condensed-matter physics. The mosseen to align nose-to-tail, resulting in a high degree of chain-
common examples of such systems are colloidal ferrofluidsing that persists throughout the entire density range. Even at
which are suspensions of roughly spherical, homogeneouslyigh density, vortex and linear orientations of the dipoles are
magnetized particles of diameter 10 nm—4@, dispersed in  superimposed on the close-packed triangular positional lat-
a simple solvent. The magnetic particles are usually coated itice dictated by the short-range repulsions.

a thin layer of inert nonmagnetic material to prevent irrevers- In recent experiments, it has been shown that bulk aque-
ible aggregation. The effective interaction between a pair obus ferrofluids in applied magnetic fields can form a variety
particles is a sum of the anisotropic dipole-dipole interactionof field-induced quasi-two dimensional structurgd. In
plus a short-range interactiongg(r), arising from the hard these experiments, the colloidal particles align along the ap-
core and(usually weak dispersion interactions. The pair po- plied magnetic field to produce bundles of needles. These
tential can therefore be represented by needles, when imaged along a direction parallel to the
magnetic field, produce a disordered glassy phase at low
) . . field, and a “disconnected labyrinthine” or “striped-liquid”
u(r) = ugn(r) + 3”2) 3 r)s("z ) () phase[7] at high field. This striped liquid is distinct from a
r r true lamellar(striped phase, in that there is no long-range
ordering of layers(see Fig. 5 of Ref[6]). A gquasi-two-
where u; is the dipole on particlg, r is the interparticle dimensional lamellar phase was observed, however, when
separation, and=r|. latex spheres were added to the ferrofluid suspension.

Early experimental studies of thin films of colloidal fer-  These studies illustrate how complex structures and
rofluids at low density and in the absence of a magnetic fieldphases can arise from quite simple effective interactions. In
showed that strong but reversible clustering can arisghe same vein, in this work we study the structure and phase
whereby the dipoles line up “nose-to-tail” to form extended behavior of a model system which approximates a two-
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chainlike structurel]. Very recent experiments using cryo- dimensional system of dipolar particles in a strong field
The aggregation of the particles to form chains is due almost

entirely to the anisotropic dipole-dipole interaction, and in

tures adopted by such quasi-two-dimensional fluids usingvhere the first term is an assumed Lennard-Jones form for
the nondipolar interactione and o are the Lennard-Jones

genic techniques and electron microscopy have produced inaligned perpendicular to the plane. The effective pair inter-
ages of chaining and aggregation in ferrofluid filfi53]. action potential is
g
particular, to the minimum energy conformation of a pair of u(ry=4e T
dipoles. Recently, Weis has studied the rich variety of struc-
energy and distance parameters, respectively, éng an
*Email address: philip.camp@ed.ac.uk additional energy parameter. With the dipoles aligned normal
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1.0 - density liquid phase transition, terminating in a second criti-
08 . cal point at lower temperature and higher pressure than the
05 L ] usual gas-liquid critical poinfsee Ref[20] and references
sl ] therein.
) We note two earlier simulation studies on model poten-
. o2r ] tials closely related to that defined in Eq2) and(3). Ref-
= 00f erence [8] details ground-state calculations and finite-
> o2k ] temperature simulations of a two-dimensional system with
oal | 1 an interaction potential consisting of a hard core plus a linear
' b repulsive ramp. Interestingly, with increasing density, a suc-
=08 b ] cession of unusual ground states is found, which includes
-0.8 | |/ 1 chained, cubic, and honeycomb structures, in addition to the
1.0 0 - - - - - . - usual triangular close-packed lattice. A related model poten-

15 20 25 30 35 40 45 50 tial, consisting of a hard core plus a repulsive step, has re-
cently been shown to give rise to a variety of unusual finite-
FIG. 1. Interaction potentials defined in Eg&) and (3): temperature structuregl6]. These include a low-density
Lennard-Jones interaction interaction potentiished ling repul-  triangular solid lattice, disordered arrays of dimers and

sive potentiale’ (o/r)® with €'/e=8./6/9 (dot-dashed ling total  higher chainlike clusters, and apparently a lamelriped
interaction potentialu(r) (solid ling). The stationary point-of- structure[16]. In both of these model systems, clustering
inflection is marked by a filled circle. occurs to minimize the number of overlaps between neigh-
boring particles.
to the plane of the fluid, the dipole part of the interparticle |n this work, the phase diagram of the two-dimensional
potential in Eq.(1) reduces tqu®/r® (purely repulsivg, and  model defined in Eqs2) and(3) is studied using MC com-
hence can be identified witl in Eq. (2). In this study, the  puter simulations. It will be shown that the fluid and solid
value of €'/ is chosen to give a purely repulsive pair poten-phases exhibit a variety of structural motifs arising from the
tial with no local minimum, and a stationary point of inflec- presence of the repulsive shoulder and the long-range 1/
tion (see Fig. L repulsive tail in the pair potential. In particular, we find fluid
, phases exhibiting a high degree of clustering of the particles,
6_2&6:2 173 3) resulting in dimerized, chainlike, and meshlike structures.
' T The solid phases possess a variety of structures, depending
on density, including low-density and high-density triangular
r* T lattices, and defective Kagonstructures. As well as being
7_6 =1348..., (4) of fundamental interest, these results suggest a strategy for
producing a range of self-assembled structures which could
u(r*) 1 be exploited for use as templating or directing agents in ma-
=5 (5) terials syntheses.
This paper is organized as follows. In Sec. I, we summa-
The asteriskg*) in Egs. (4) and (5) denote values at the fize the simulation methods employed in the study. Sec. Il
stationary point of inflection iru(r). The pair potential is contains the results of this work, pertaining to the phase be-

plotted in Fig. 1, along with the constituent Lennard-Jonedavior (Il A), structure(lll B), diffusion (Il C), clustering

and 1f3 repulsive interactions. It should be noted that in(llD), chain formation (Il E), and polygon formation

many ferrofluids, the attractive dispersion interactions aré!ll F) in the model system. Sec. IV concludes the paper.

very weak compared to the dipole-dipole coupling, and

hence such systems can be modeled as assemblies of dipolar Il. SIMULATION DETAILS

hard spheres. By contrast, the energy parameter in(&g.

implies quite a large dispersion interaction compared to the Canonical(NAT) MC simulations ofN particles were per-

dipole-dipole coupling. formed in square simulation cells of arda= L2, and at tem-
The interaction potential specified in Eq8) and(3) con-  perature T; constant-tension constant-temperatuiePT)

sists of a short-range “hard” core, a repulsive shoulder, andgimulations were performed with tensioR,[21]. Periodic

a long-range repulsive tail. There is considerable interest ifboundary conditions were applied in all cases. Unless stated

the properties of systems with such “core-softened” poten-otherwise, a system size df=500 particles was employed,;

tials [8—16]. Recent activity in this area has been promptedsome simulations wittN=2000 particles were also carried

largely by the discovery of density anomaliésxpansion out to assess finite-size effects. Long-range corrections to

upon cooling at constant presspuie network-forming fluids  thermodynamic properties were computed in the familiar

such as watefl17], phosphorud 18], and carbon19]. To fashion, by ignoring spatial correlations beyaneL/2 [21].

explain these anomalies, it has been proposed that there exlstthe NAT simulations, one MC cycle consisted of, on av-

second critical points in the phase diagrams. In the case arage, one trial displacement per particle. In MRT simu-

water, experimental and simulation results are consisterations, each MC cycle also included, on average, a trial

with there being a first-order low-density liquid to high- displacement in I&, with the cell geometry fixed. In all
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filled circles and solid lines; the crossover from high-temperature T
“normal” fluid to low-temperature “clustered” fluid is represented
by open circles and the dashed line. FIG. 3. Thermodynamic properties as functions of temperature

along the isobar withP* =0.2: configurational enthalpyi*/N
simulations, the maximum displacement parameters were adtop); configurational heat capacit@,/Nkg (middle); density p*
justed to give 30% acceptance ratios. For the most piaT, ~ (bottom. The lines are guides to the eye.
simulations were used to locatapparently first-orderfluid-

solid phase boundaries, while detailed calculations of strucrecent simulation study of hard disks yielded evidence com-
tural properties were carried out during simulations in thepatible with distinct fluid-hexatic and hexatic-solid transi-
NAT ensemble. The results of the simulations are reportEd iﬂonS, but no direct observation of the hexatic phase was
terms of the following reduced units: the reduced temperapossible[26]. It is beyond the scope of this study to investi-
ture T* =kgT/e, wherekg is Boltzmann's constant; the re- gate the possibility of a KTHNY scenario with the current
duced number density* =No?/A; the reduced tensioR* interaction potential, but it would be interesting to study the
=Po?/e; the reduced configurational energff =U/e; the  effects of the repulsive shoulder in the potential. With these
reduced enthalpyt* = (U+PA)/e. points in mind, the fluid-solid phase boundaries have been

To help identify fluid phases, the diffusion of the particles determined by locating sharp features in the enthalpy, heat
was monitored by calculating the mean-squared displacecapacity, and density, as functions of temperature at fixed
ment(R?(7)) using the expression tension.

As an example, in Fig. 3 we show various thermodynamic
properties computed along an isobar wiRli=0.2. On the
scale of Fig. 2, in the temperature range 0803 <0.010
this particular isobar is an almost vertical line with=0.19.
wherer;(7) is the position of theith particle afterr MC In Fig. 3, we see a sharp feature in the enthdigy, and a
cycles. In calculating this quantity, we allow the particles topeak in the heat capacitf, at a temperature ofl*
leave the central simulation cell. Although there is no real=0.0065. An inspection of simulation snapshots confirmed
dynamical information in MC simulationgR?(7)) should  that the sharp features @t =0.0065 are due to a transition
increase linearly in fluid phases, assuming a fixed MC accebetween a high-temperature fluid and a low-temperature tri-
tance ratio. angular lattice; these phases will be illustrated in Sec. Il B.

Above T* =0.0065, the densityncreaseswith increasing
IIl. RESULTS temperature, implying a negative thermal expansion coeffi-
cientap=V~1(dV/dT)p. This is illustrated in more detail in
Fig. 4, which shows the density as a function of temperature

In Fig. 2, we present the low-temperature portion of thein the regionT* <0.020; «p>0 in the regionsT* <0.0065
phase diagram in the density-temperatugd -T*) plane, and T*=0.015, whereasxp<<0 in the range 0.0065T*
showing the fluid-solid phase boundaries. Note the presence 0.015. The magnitude of this anomaly is small; the density
of two regions of stability of solid phases. The fluid-solid drops by less than 1% as the system is cooled fiGm
phase boundaries were determinedN®T-MC simulations. =0.015 to T* =0.0065. It has been suggested that such
It should be remembered that it is still not proven that two-anomalies arise in two dimensions due to the freezing tran-
dimensional melting in hard-core systems proceeds as in th&tion being quasicontinuous, as in the KTHNY scenario, and
Kosterlitz-Thouless-Halperin-Nelson-Yourg{THNY) sce-  so crystalline clusters can coexist with the fluid in finite-size
nario[22-24, i.e., via an intermediate hexatic phase linkedsimulations at constant chemical potential or pres$e.
to the fluid and solid phases by continuous transitions. AThe explanation for the behavior in Fig. 4 is not clear, how-

1 N
(R¥(m)=5 2, In(n=ri(0)2, (6)

A. Phase behavior
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FIG. 4. Densityp* as a function of temperaturg* along the i
isobar withP* =0.2, in the vicinity of the fluid-solid transition. 85

i
p%=0.45
ever, since no such crystalline ordering is apparent in finite-
size simulations abovd* =0.0065. In addition, no such
anomalies were found for other isobars, although since the
size of the effect is so small, it is possible that other state
points with ap<<0 were missed.

The fluid-solid boundaries were determined in a similar
fashion along isobars in the range 8.00 3<P*<7.0, al- ) )
though as is shown below, the structural characteristics of the FIG: 5: Snapshots froMAEMC simulations ofN=500 par-
fluid and solid phases change dramatically with increasinctﬁ;?Ies along the isotherm with™ =0.005. Particles are drawn with
pressure. No attempts were made to resolve the fluid andlameter b.
solid coexistence densities, hence the phase boundaries are
represented as single lines on Fig. 2. Note that at high tensity of p*=0.50, apparently in coexistence with a droplet of

perature there is only one stable solid phase. the fluid phase located near the center of the simulation cell.
In the Kagomestructure, each lattice point is connected to

B. Structure four others. At progressively higher densities the vacancies
The structural features of the system at low temperature ;;iga”y fill up, giving ultimately a close-packed triangular

are fascinating. As an illustration, in Fig. 5 we show snap-“""_
shots fromNAT-MC simulations spanning the density range __F19ureé 5 shows that at low temperature and moderate den-
0.05<p*<0.70 along the isotherrT* =0.005. Starting at S|_t|es, the particles prefer _to cluster, rather t.han to rgtaln as
p*=0.05, the system is clearly in an isotropic fluid phasedn‘fu_se a structure as possmle: To gxp_lore_ this eﬁept in more
(labeled a normal fluid in Fig.)2 although the snapshot is d€t@il, we computed the radial distribution functiordf)
superficially similar to the columnar glassy phase reported id(f); Some representative results for the isotherm With

Fig. 5 of Ref.[6]. At a density ofp* =0.15, the system is in — 0-:005 are shown in Fig. 6. At a density pf=0.05, the

the solid Il region of the phase diagram: the snapshot clearl§yStem is in the normal fluid phase, which clearly shows no
shows the low-density triangular lattice structure. Upon comiong-range ordering. From the position of the first peak in the
pression tg* =0.25, the system moves out of the triangularrdfv one can est_|mate the effective hard-core dlamz_ater to be
solid 1 phase, and exhibits a largely dimerized structured=4.50, Which is comparable to the mean separatiofipl/
although some trimers are also in evidencepAt0.30 the ~ =4.470. The system is in the solid Il phase#=0.15, and
clustering has increased to such a degree that chainlike strué1€ triangular lattice structure is reflected in the rdf; the ef-
tures are apparent; the structure is reminiscent of the labyective hard-core diameter is estimated todse2.70, again
rinthine phase reported in Rg6]. At p*=0.35 the chains close to the mean separation/k=2.58. At a density of

are spanning the simulation cell, and the resulting structure i8* =0.25, the system is largely dimerizésee Fig. %, and
suggestive of a lamellar stripe phase; a similar structure ha§e clustering is reflected in a narrow peak in the rdf centered
been reported in systems with step potentials at low temperd&t r=1.25%. This is significantly smaller than the mean
tures and at comparable reduced densiieported in units  separation 4/p=2.00r and corresponds to the region of the
of the hard-core diametef16]. Chain formation and the narrow plateau in the interaction potentitdee Fig. 1
possible existence of a lamellar phase are discussed in mofiderefore, it is the repulsive shoulderurr) that is respon-
detail in Sec. lll E. At densities op*=0.40 andp*=0.45, sible for the apparent clustering, or “core collapd@], of

the structures appear to consist of tilings of closed polygonghe particles. Before going on to discuss clustering in more
with the polygon size decreasing with increasing densitydetail, the following section deals with the fluid nature of the
Domains with the Kagoméattice structure emerge at a den- clustered states.
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FIG. 6. Radial distribution functiog(r) at three densities along
the isotherm with T*=0.005: p*=0.05 (bottonm), p*=0.15

FIG. 8. Fraction of aggregated particles,as functions of tem-
peratureT* along three isochores* =0.30 (bottom), p*=0.35

(middle), p* =0.25(top). The curves are displaced by four units for (middle), and p*=0.40 (top): simulation resultgopen circley fits

clarity.

The mean-squared displacement, Eg), is shown for

C. Diffusion

from Eq. (8) (solid lineg; crossover temperaturéglled circles.

D. Clustering
Clustering is the result of a balance between energy and

entropy (packing, but roughly speaking it arises from a re-
quirement to minimize the number of overlaps between the
repulsive shoulders on the particles. The clustering of the

) g &articles can be quantified with the help of a distance-based
appear almost flat; on an expanded scale the curves still ri Citerion. The rdf aip*=0.25 in Fig. 6 shows that the cluster

roughly linearly, but clearly the dynamics at these statepeak does not extend beyond aboutod feferring to Fig. 1,

pomts are characterized by very slow single-particle MO4nis distance corresponds quite closely to the point at which

the potential begins to die away. Hence, in the following we
&hall designate a pair of particles separated by less than 1.5

three densities along the isotherm witth=0.005, in Fig. 7.
At a density ofp* =0.25, the “diffusion” clearly indicates a
fluid phase. Atp*=0.35 andp*=0.45, however, the curves

dynamics at this temperature, and in the density rang
" ; .

O.3Q$p s0.45, §hould be do_mlnated by very slow collective a? belonging to the same cluster.

motions, and it is even possible that these states should bes To examine the degree of aggregation as a function of

be _classn‘l_ed as_amorphous, or g_lass_y. It .WOUId be very Intert'emperature, we computed the fraction of particles that have
esting to investigate the dynamics in this system, and mo

' . . . . “at least one neighbor within 105 denoted byx. This quan-
fr%lalgsgyTr?Tr:CeS(mE;ntsi:;neul?ﬂggz rc’::agi]flcsesﬁisﬁmncg/ftalllrllintity is plotted as a function of temperature along three isoch-

v i
states will be referred to as “fluids,” with the proviso that Bres withp®=0.30, 0.35, and 0.40, in Fig. 8; the curves for

. X higher densities exhibit smaller deviations from=1. We
subsequent dynamical studies may show them to be gIaSS¥‘|ave analyzed the low-temperature variationxofising a

simple quasichemical equilibrium model. At very low tem-

22 L peratures, almost all of the particles are incorporated in clus-
20t p’=0.25 o ters. As the temperature is raised, some particles will ‘break
18} - free’ of the clusters, accompanied by changes in the energy
16 L ] and entropy. Assuming that the concentration of “free” par-
o 14l ] ticles is small, and hence that these particles do not interact
A ol 1 appreciably with one another, we approximate the free en-
£ 1'0 1 ] ergy F by
[ang
V08 1 F 5
06 | ] N=kBT[InpA —1+xInx+(1-=x)In(1—x)]
04 . .
02 ... »‘::::;::::_’;’_‘::;:-::r-':::‘,’_'i'-"flff—"::s*:g:jg y +1=x)(Aug=TAs+CT?), 0
00 4 6 8 10 12 14 16 18 20 22 24

where the first term in square brackets is the ideal-gas con-
tribution, A is the de Broglie thermal wavelength of the par-
ticles,Augy andAs, are the energy and entropy costs, respec-
tively, of turning a clustered particle into a free parti¢by
creating an exclusion zone of radius &)3vhen there are no
other free particles in the systefie., at very low tempera-

Monte Carlo cycles, t/ 10°

FIG. 7. Mean-squared displacemeii®?(7)) as a function of
Monte Carlo cycle at three densities along the isotherm With
=0.005: p*=0.25 (solid line); p*=0.35 (dashed ling p*=0.45
(dot-dashed ling
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FIG. 9. Density dependence of the energy chaigg associ- FIG. 11. Reciprocals of the average chain length) (open
ated with Creating an exclusion zone of radiuselésound an ini- Circleg' and average po|ygon siiep) (f|||ed Circ|egl as functions
tially aggregated particle. of density along the isotherm wiffi* =0.005. The lines are guides

to the eye.
ture), andC is related to a higher thermodynamic derivative
of F. Minimizing the free energy with respect foyields, separation, and hence greater repulsion, between a free par-
ticle and its near neighbor@lbeit at least 1.5 away). The
Q(T) g associated entropy changes, decreases with increasing
*1+QT) ®

density, which reflects the decrease in free volume of a par-
ticle with an exclusion zone of radius x5
T)= Aug Asg N CT
QUD=exA i 1, ")

Note that the high-temperature limit afincreases with
(9)  increasing density and decreasing mean separation, simply

because the criterion for clustering is distance based. For
These expressions are only going to be valid at low tempera2a@ch density, the temperature of maximum slope iwas

ture, and when the fraction of free particles is small. Equaldentified as a “crossover” temperature, roughly indicating
tions (8) and (9) were fitted to simulation results along iso- the point at which the fully aggregated system begins to
chores with densities in the range 0s28°<0.55. The fits Unbind appreciably. These temperatures §br0.30, 0.35,

for p*=0.30, 0.35, and 0.40 are included in Fig. 8. The ap_and 0.40 are indicated in Fig. 8. The locus of crossover tem-
proximate expressions presented here are merely adequateR@/atures over a wide density range is also plotted on the
fit the simulation results at low density, largely because th®h@se diagramin Fig. 2, and can be interpreted as delineating
fraction of free particles is significant, but the quality of the the boundary between the high-temperature normal fluid and
fit does improve with increasing density. The fit parameterdhe low-temperature clustered fluid. Having discussed the
Au, and As, are plotted as functions of density in Figs. 9 More general aspects of clustering in this system, we now

and 10, respectively. Figure 9 shows the energy change MOVe On to the specific formation of chains and polygons.
increasing with density, due mainly to the decreasing mean

E. Chaining
2 - - - In Ref.[16], a lamellar “striped” phase was observed in
simulations of two-dimensional hard disks with a repulsive
0 - 4

step potential extending out to one-and-a-half particle diam-
eters. Similar structures are apparent in the present calcula-
tions in the density range 0.83p* <0.35; see the snapshot at
)l p*=0.35 in Fig. 5. To examine chaining in more detail, we
have computed the number of spheres per chainsing the
4t distance based criterion introduced in Sec. Ill D. In Fig. 11
we plot the reciprocal of the average f as a function of
density along the isotherm witf* =0.005. At p*<0.2,
1 (ng)"1=1, because there is no clusterifg.) ! decreases
sharply at a density op*=0.2, which corresponds to the

-8 s - - approximate solid-fluid transition density at* =0.005.

02 03 04 03 06 There appears to be a point of inflectionpt=0.25, where
(n.)~1=0.5 corresponding to the dimerized state apparent in
FIG. 10. Density dependence of the entropy changg asso-

the simulation snapshot&see Fig. 5. The average chain
ciated with creating an exclusion zone of radiusdldround an length rises rapidly until a density @ =0.31, above which
initially aggregated particle. (n.)~1is effectively zero.

2t

As /K,

6 I
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FIG. 12. Snapshots froflAT-MC simulations ofN=500 par-
ticles (left) and N=2000 particles(right), at temperatureT*

=0.005 and density* =0.31. Particles are drawn with diameter o
lo.

FIG. 14. Probability distribution functiop(n,) of the number
In theN =500 particle system &t* =0.005 angp* =0.31,  of particles per polygom, at p* =0.45 andT* = 0.005.

an almost perfect lamellar structure is formed; a snapshot
from a S|mulat|_on unpler these condljclons IS ShO\.Nn in Fig. 12'clusters afforded by the periodic boundary conditions. The
To check for finite-size effects, a simulation with=2000
. .results at low temperature correctly show that the larger sys-
particles was performed at the same temperature and den&{)é, : .
a snapshot is included in Fig. 12. It is clear that the perfect- ¢an accommodate  larger chains. In  quasi-two-
lamellar structure in th&l=500 particle system is artificially dlmensmngl dlpolgr fluu_js,.t.he 'format|on of chains is no't
stabilized by the periodic boundary conditions; effectively, 2cCompanied by discontinuities in any of the thermodynamic
the chainlike clusters extend over the entire length of thdunctions, and hence there is no “chaining” phase transition
simulation cell, and join up with their periodic images. By _[27]._By analogy, |t_|s _unllkely that there is a phase transition
contrast, there are many defects in tNe=2000 system, In this system. This issue could be explored, however, by
largely consisting of disclinations. This indicates that there isalculating the Binder cumular(®?)?/(®*) for an order
likely no stable lamellar phase in this system; indeed, théarameterb related ton.. If there is a chaining phase tran-
snapshot for théN=2000 particle system is more reminis- sition, then the Binder ratios for different system sizes will
cent of a labyrinthine or “striped liquid” phass,7], in that  intercept at the critical temperature. It is computationally de-
there is no long-range ordered layer structure. manding to achieve sufficiently good statistics for such
To examine the onset of stripe formation further, we havefinite-size scaling procedures, and is beyond the scope of this
computed n;) as a function of temperature at a fixed densityexploratory study.
of p*=0.31. The results for bothl=500 andN= 2000 par-
ticle systems are shown in Fig. 13. Abo¥& =0.012, the
results are essentially independent of system size. Below this
temperature, howeven,) ! drops faster in the smaller sys- We now focus on the unusual Iow-tem.p.erature network
tem, reflecting the artificial stabilization of system-spanningStructure made up of closed polygons, typified by the struc-
ture atp*=0.45 andT* =0.005 shown in Fig. 5. Using the
04 - distance-based criterion introduced in Sec. llI D, we have
calculated the number of particles in a given polygop,
,o° The reciprocal of the average of, is plotted as a function
03 | o © j of density at a temperature af* =0.005 in Fig. 11. At
p*=0.35 the structure is made up of chainlike clusters, and
o hence there are no polygons. Upon increasing the density, the
“ao02 | e ] chains form connections with neighboring chains, resulting
g in a tiling of the plane with polygons of decreasing size. As
o p* approaches the close-packed densjty,)  *—1/3, re-
o L * il flecting the onset of the triangular lattice structure.
The probability distribution functiomp(n,) is illuminat-
.S ° ing. This is shown ap*=0.45 andT* =0.005 in Fig. 14.
0 . ) , . ) , . ) 49% of the polygons have four or more sides, and the aver-
0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020 0.022 age polygon size is 6.0. The most probable polygon to be
T found (besides the trianglas the octagon; this likely reflects
FIG. 13. Reciprocal of the average chain length) as a func-  the long-range repulsions between the particles, which keep
tion of temperature along the isochore wjth=0.31: results from Opposite edges in the same polygon as far away from each

NAT-MC simulations ofN=500 particles(filled circles; results ~ other as possible, resulting in largeughly circulaj cavities
from NAT-MC simulations ofN=2000 particlegopen circles forming in the system.

F. Polygon formation

®0
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IV. DISCUSSION magnitude estimates of the system parameters that would be

The structure and phase behavior of a two-dimensiona@equ'red to produce the structures observed in the simula-

: T . ions at, say,T*~10 2. At a temperature of 300 K, the
system with core-softened repulsive interactions have been_ A . . :
; : X : . barrier height in the interaction potential would have to be
studied using MC simulations. The essential features of the . : s .
= 10" K in units of kg ; this represents a very strong interac-

potential are a short-range hard-core repulsion, a repulsiV{s S ; ; . .
> i ) : . ion, which is unlikely to be achieved through dispersion and
fohnOl{Li?]r gojgga:glnlﬂs?/es, tgillonary point of inflection, and amagnetic interactions. Other effective interactions, such as
g-rang P ” . depletion forces, might prove more suitable for this purpose.
. The Iow-tempgrature portion of_the p_hase diagram CONwjith regard to suitable surface concentrations, for
sists of low-density and high-density solids, separated by fanometer-sized particleg* ~0.1 corresponds to a real
phase with no long-range order. The low-density solid pos- . -3 A-2 N .
. . . number density~10 . The gains from being able to
SESSEs a_trllangular Iattlc_e structure, whergas th_e h'gh'der.]s'é\éntrol the structures of thin films are manifold. Potential
solid exhibits a succession of structures, including defective '

Kagome and close-packed triangular lattices. The IOW_apphcauons which immediately come to mind are the use of

X . . striped phases in the directed growth of molecular wires or
temperature fluid phase exhibits a variety of unusual Strucéarbon nanotubes. and the use of Kagatactures as tem-
tural motifs, including chains, stripes, and higher polygons ! 9

such as octagons. The presence of clusters is a direct result%liatmg or pattering agents in the production of porous mem-

. S . -~ “branes. Despite the likely difficulty of realizing the model
the particles minimizing the number of overlaps with neigh- : : .
. . . . . . system in the laboratory, the results presented in this paper
boring particles; the formation of structures with higher

polygons is also favored by the long-range*Ifepulsions. illustrate the complexity of structures than can arise from

The impact of these complex structures on the dynamicaYery simple isotropic interactions.
properties is likely to be significant; the results from MD
simulations of the model system will be reported in a future
paper. The support of the Engineering and Physical Sciences Re-
With regard to the relevance of these results to experisearch Council through the purchase of computer hardware
mental work, it is helpful to consider some order-of- under Grant No. GR/R45727/01 is gratefully acknowledged.
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